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Lattice Boltzmann model for the compressible Navier-Stokes equations
with flexible specific-heat ratio
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~Received 11 November 2003; published 25 March 2004!

We have developed a lattice Boltzmann model for the compressible Navier-Stokes equations with a flexible
specific-heat ratio. Several numerical results are presented, and they agree well with the corresponding solu-
tions of the Navier-Stokes equations. In addition, an explicit finite-difference scheme is proposed for the
numerical calculation that can make a stable calculation with a large Courant number.
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The kinetic equation approach@1–9# is often used to ob-
tain solutions of the compressible Navier-Stokes~NS! equa-
tions. The merits of this approach are the simple basic eq
tion, the linear derivative terms, the high resolution f
capturing discontinuities~e.g., shock waves! without any
complicated treatment of the numerical scheme, etc. H
ever, to solve the kinetic equation, the molecular veloc
space must be considered in addition to the physical sp
Therefore, the calculation time naturally becomes larger.
employing the molecular velocities of discrete type, this d
advantage can be avoided to some extent. This is the la
Boltzmann method~LBM ! @1–7#.

The LBM for the compressible NS equations was fi
devised by Alexanderet al. @1#. Their model includes the
nonlinear deviation terms that are proportional to the thi
order flow velocity. Later, Chenet al. @2# proposed a mode
without these nonlinear deviation terms. However, an imp
tant defect still remains. That is, the specific-heat ratiog
cannot be chosen freely. Especially for the one and tw
dimensional models,g is fixed at unphysical values of 3 an
2, respectively.

In the present paper, we develop a lattice Boltzma
model ~without nonlinear deviation terms! of the two-
dimensional version that overcomes the defect cited ab
For possible future extension to the one and thr
dimensional versions, the formulation is presented withD
51, 2, or 3! spatial dimensions, and then the specific tw
dimensional model (D52) is given.

For the sake of clarity, we first write down the compres
ible NS equations:
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~a,b,x51,2, . . . ,D !, ~1e!

and t is the time andxa is the spatial coordinate.r, ua , T,
and p are, respectively, the density, the flow velocity in th
xa direction, the temperature, and the pressure of a gas.R is
the specific gas constant andb is a given constant related t
the specific-heat ratiog by

g5~b12!/b. ~2!

The above NS equations~1a!–~1c! are characterized byg,
m(r,T) ~the viscosity!, mB(r,T) ~the bulk viscosity!, and
l(r,T) ~the thermal conductivity!. Note that, in the presen
study, the subscriptsa, b, and x represent the number o
spatial coordinates and the summation convention is app
to these subscripts.

Now we present a lattice Boltzmann model that gives
solution of the compressible NS equations~1a!–~1c!. Let cia
( i 51,2, . . . ,I ; I is the total number of discrete molecula
velocities! be the molecular velocities in thexa direction of
the i th particle, andh i be another variable newly introduce
to control the specific-heat ratio.f i(t,xa) is the velocity dis-
tribution function of thei th particle. The macroscopic vari
ablesr, ua , andT are defined as

r5(
i 51

I

f i , ~3a!

rua5(
i 51

I

f icia , ~3b!

r~bRT1ua
2 !5(

i 51

I

f i~cia
2 1h i

2!. ~3c!

Note that the summation convention is not applied to
subscripti representing the kind of molecules.

Consider the kinetic equation of the BGK type@10#:
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wheref(r,T) ~the relaxation time! is a given function ofr
and T @3#, and f i

eq(r,ua ,T) ~the local equilibrium velocity
distribution function! is a given function of the macroscop
variables that satisfies the following relations:
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Then the macroscopic variablesr, ua , andT obtained from
the solution of the kinetic equation~4! for small values of
«[f(r0 ,T0)ART0/L (r0 , T0 , andL are, respectively, the
reference density, temperature, and length! satisfy the com-
pressible NS equations~1a!–~1c! with the relative error of
O(«2), whose transport coefficients are given by

m5rRTf, mB52~1/321/b!rRTf,

l5~b12!rR2Tf/2. ~6!

The method of derivation is a straightforward application
the Chapman-Enskog expansion or the usual asymp
analysis for«!1. See Refs.@1–5,9,11,12# for details.

We will give a specific form ofcia , h i , and f i
eq of the

two-dimensional version (D52 andI 516) that satisfies the
above constraints~5a!–~5g!:

~ ĉi1 ,ĉi2!55
cyc: ~61,0! for 1< i<4

cyc: ~66,0! for 5< i<8

&~61,61! for 9< i<12

3

&
~61,61! for 13< i<16,

ĥ i5H 5/2 for 1< i<4

0 for 5< i<16
~7!

~see Fig. 1!, where cyc indicates the cyclic permutation, a
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for i 51,2, . . . ,16, ~8!

wherea0i , . . . ,ei are given constants whose specific valu
are arranged in Table I. The variables with a caret are
nondimensional quantities, i.e.,T̂5T/T0 and (ûa ,ĉia ,ĥ i)
5(ua ,cia ,h i)/ART0.

The proposed lattice Boltzmann model, or the kine
equation~4! with cia , h i , and f i

eq given above@or by Eqs.
~7! and ~8!# can take any value ofb which is related to the
specific-heat ratiog by Eq.~2!. The key is the introduction of
h i that makes it possible to satisfy relations~5c!–~5f! at the
same time for any value ofb @11#. As for the three-
dimensional version (D53), it is, in fact, possible to con-
struct a specific model by using 32 velocities (I 532). How-
ever, this specific model is not shown here, since the one
derived did not show excellent performance in the numer
computation and it will be possible in the future to constru
a better model for computation. For the readers who are
terested in the three-dimensional calculation, we introd
Ref. @2# that proposed the three-dimensional model w
fixed specific-heat ratiog55/3.

In order to solve the kinetic equation~4! of the above
lattice Boltzmann model numerically, here we propose
scheme that utilizes the Crank-Nicolson scheme:

f i u t1Dt5 f i u t2
ciaDt

2 S ] f i

]xa
U

t

1
] f i

]xa
U

t1Dt
D

1
f i

eq~r,ua ,T!2 f i

f~r,T!
U

t

Dt, ~9!

where the quantities withu t are evaluated at timet. Dt is the
time step,Dx is the grid step, and] f i /]xa is the usual
second-order upstream finite difference given by

FIG. 1. Distribution ofcia ~a51,2; i 51,2, . . . ,16) for thepro-
posed lattice Boltzmann model.
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] f i

]xa
5H @3 f i~xa!24 f i~xa2Dx!1 f i~xa22Dx!#/2Dx for cia.0

@23 f i~xa!14 f i~xa1Dx!2 f i~xa12Dx!#/2Dx for cia,0,
~10!
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wheref i(xa) is evaluated at spacexa . Although the collision
term, or the last term on the right-hand side of Eq.~9! is
evaluated at timet, we can easily find that scheme~9! with
Dt;f(r0 ,T0) and Dx;(r0 ,T0)ART0 achieves second
order accuracy in«, and can describe the solution of th
compressible NS equations~1a!–~1c! appropriately.

A stable calculation of scheme~9! with the large Courant
numberuciauDt/Dx is possible. Moreover, it can be solve
from the upstream side ofcia successively without using a
iterative method, because] f i /]xau t1Dt can be evaluated by
the already calculated values off i u t1Dt on the upstream side

Now several numerical examples are presented. F
consider the Riemann problem whose initial macrosco
variables are given by

r̂5T̂51, û15H 2U for x̂1,0

U for x̂1.0,
~11!

whereU is a given constant. This problem is characteriz
by U, «, f̂( r̂,T̂)[f(r,T)/f(r0 ,T0), andg. The numerical
results withU50.5, «50.001, andf̂51/r̂ are shown for
three different values ofg55/3, 7/5, and 9/7~or b53, 5, and
7! in Fig. 2 by the plots. There is no characteristic length
the initial condition so that the dimension of the length
nondimensionalized byt0ART0, where the presented resul

TABLE I. The coefficientsa0i , . . . ,ei ( i 51,2, . . . ,16) in the
local equilibrium distribution functionf i

eq given by Eq.~8!.

i 1–4 5–8 9–12 13–16

a0i 0 1/96 81/160 24/15

a1i
b22

25

2121b2408

86400

2229b18

3200

89b1222

2700

a2i 0
b12

1728

b12

320

2b22

270

a3i 236/115 2799/397440 2117/640 13/135

a4i
b14

115

19b1306

397440

9b138

640

22b29

270

a5i 1/115 19/397440 9/640 21/135

b0i 0 0 9/40 22/45

b1i
2~b22!

25

22b129

32400

214b13

400

2~7b111!

2025

b2i 0 21/2592 1/80 27/810

d0i 72/115 229/298080 9/160 22/405

d1i
22~b14!

115

b14

74520

2b24

160

b14

810

d2i 22/115 1/74520 21/160 1/810

ei 0 1/46656 23/320 8/3645
03570
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are those att5t0 . The corresponding numerical results
the NS equations themselves@Eqs.~1a!–~1c!#, solved by the
so-called MacCormack scheme@13# with the sufficient num-
ber of meshes, are shown by the lines. We find a good ag
ment between the two results for each value ofg.

Next, we consider the shock-tube problem. The init
macroscopic variables are given by

r̂5H 1 for x̂1,0

P for x̂1.0,
û150, T̂51, ~12!

whereP is a given constant. This problem is characterized
the four parametersP, «, f̂( r̂,T̂), and g. The numerical
results withP52, «50.001, andf̂51/r̂ are shown for three
different values ofg55/3, 7/5, and 9/7 in Fig. 3 by the plot
together with the corresponding numerical results of the
equations solved by the MacCormack scheme~represented
by the lines!. We find a good agreement between the tw
results for each value ofg.

Finally, we show the results of the two-dimension
steady Couette flow. The boundary conditions are

û152U, T̂51 at x̂250, ~13a!

û15U, T̂51 at x̂251, ~13b!

whereU is a given constant. This problem is characteriz
by the four parametersU, «, f̂( r̂,T̂), andg. The numerical
results withU50.5, «50.002, andf̂51/r̂ are shown for
three different values ofg55/3, 7/5, and 9/7 in Fig. 4 by the
plots together with the corresponding numerical results
the NS equations solved by the MacCormack scheme~rep-
resented by the lines!. We find a good agreement between t
two results for each value ofg.

FIG. 2. The profiles ofT̂ and û1 for the Riemann problem

whose initial condition is Eq.~11! with U50.5, «50.001, andf̂
51/r̂. The plots are the results by the LBM:j, g55/3; n, g57/5;
s, g59/7. The lines represent the corresponding results by
MacCormack method with the sufficient number of meshes:g55/3
~solid lines!, 7/5 ~dashed lines!, and 9/7~dotted lines!.
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In conclusion, we have developed a lattice Boltzma
model for the compressible NS equations with a flexi

specific-heat ratio. Several numerical results are prese
and they agree well with the corresponding solutions of
compressible NS equations solved by the MacCorm
scheme. Thus, the validity of our model has been stron
confirmed. The explicit finite-difference scheme is also p

posed for the numerical calculation of the LBM. This sche

FIG. 3. The profiles ofT̂ and û1 for the shock-tube problem

whose initial condition is Eq.~12! with P52, «50.001, andf̂
51/r̂. See the caption of Fig. 2 for the representation of the sy
bols j, n, s, and the lines.
ys
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can make a stable calculation with large Courant numbe
that it can be a new merit of the LBM. According to ou
numerical tests, it can make stable calculation with the C
rant number of up to 100 if the solution is smooth andDt
,2f(r,T) is satisfied.

-
FIG. 4. The profiles ofr̂ and T̂ for the two-dimensional steady

Couette flow whose boundary conditions are Eqs.~13a! and ~13b!

with U50.5, «50.002, andf̂51/r̂. See the caption of Fig. 2 fo
the representation of the symbolsj, n, s, and the lines.
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